Jupyter Sphinx
Release 0.3.2

Jupyter Development Team

Dec 18, 2022

10

11

CONTENTS:

Installation

Enabling the extension

Basic Usage

Thebelab support

Directive options

Controlling exceptions

Controlling the execution environment
Downloading the code as a script
Styling options

Configuration options

Changelog
I1.1 Release 0.3.0 o o o e e e e e e e

11

15

17

19

21

23

25

Jupyter Sphinx, Release 0.3.2

Jupyter-sphinx is a Sphinx extension that executes embedded code in a Jupyter kernel, and embeds outputs of that
code in the document. It has support for rich output such as images, Latex math and even javascript widgets, and it
allows to enable thebelab for live code execution with minimal effort.

CONTENTS: 1

https://thebelab.readthedocs.io/

Jupyter Sphinx, Release 0.3.2

2 CONTENTS:

CHAPTER
ONE

Get jupyter-sphinx from pip:

INSTALLATION

’pip install jupyter-sphinx

or conda:

’conda install jupyter_sphinx

Jupyter Sphinx, Release 0.3.2

4 Chapter 1. Installation

CHAPTER
TWO

ENABLING THE EXTENSION

To enable the extension, add jupyter_sphinx.execute to your enabled extensions in conf . py.

Jupyter Sphinx, Release 0.3.2

6 Chapter 2. Enabling the extension

CHAPTER
THREE

BASIC USAGE

You can use the jupyter—execute directive to embed code into the document:

jupyter-execute::

name = 'world'
print ('hello " + name + '!")

The above is rendered as follows:

name = 'world'
print ('hello ' + name + '!")

hello world!

Note that the code produces output (printing the string ‘hello world!’), and the output is rendered directly after the
code snippet.

Because all code cells in a document are run in the same kernel, cells later in the document can use variables and
functions defined in cells earlier in the document:

a =1
print ('first cell: a = '.format (a))

’first cell: a =1

a += 1
print ('second cell: a = '.format (a))
’second cell: a = 2

Because jupyter-sphinx uses the machinery of nbconvert, it is capable of rendering any rich output, for example
plots:

import numpy as np
from matplotlib import pyplot
$matplotlib inline

x = np.linspace(lE-3, 2 * np.pi)
pyplot.plot (x, np.sin(x) / x)

pyplot.plot (x, np.cos(x))
pyplot.grid()

Jupyter Sphinx, Release 0.3.2

1.00 +

0.75 4

0.50 4

0.25 4

0.00 4

—0.25

—0.50

—0.75

—1.00 ~

LaTeX output:

from IPython.display import Latex
Latex (' _{-00}"00 e”{-x’}dx = \sqgrt{}")

or even full-blown javascript widgets:

e Ydz=,/

import ipywidgets as w
from IPython.display import display

a = w.IntSlider ()

b = w.IntText ()

w.Jjslink ((a, 'value'), (b, 'value'))
display(a, b)

It is also possible to include code from a regular file by passing the filename as argument to jupyter—-execute:

jupyter-execute:: some_code.py

jupyter—execute may also be used in docstrings within your Python code, and will be executed when they are

included with Sphinx autodoc.

Chapter 3. Basic Usage

CHAPTER
FOUR

To turn on thebelab, specify its configuration directly in conf . py:

THEBELAB SUPPORT

jupyter_sphinx_thebelab_config = {

'requestKernel': True,
'binderOptions': {
'repo': "binder-examples/requirements",

}I

With this configuration, thebelab is activated with a button click:

By default the button is added at the end of the document, but it may also be inserted anywhere using

. thebe-button:: Optional title

https://thebelab.readthedocs.io/

Jupyter Sphinx, Release 0.3.2

10 Chapter 4. Thebelab support

CHAPTER
FIVE

DIRECTIVE OPTIONS

You may choose to hide the code of a cell, but keep its output visible using :hide-code::

jupyter-execute::
:hide-code:

print ('this code is invisible')

produces:

this code is invisible

this option is particularly useful if you want to embed correctness checks in building your documentation:

jupyter-execute::
:hide-code:

assert everything_works, "There's a bug somewhere"

This way even though the code won’t make it into the documentation, the build will fail if running the code fails.

Similarly, outputs are hidden with :hide—output::

jupyter-execute::
:hide-output:

print ('this output is invisible')

produces:

print ('this output is invisible')

You may also display the code below the output with : code-below::

jupyter—-execute::
:code-below:

print ('this output is above the code')

produces:

’this code is below the output

’print('this code is below the output')

11

Jupyter Sphinx, Release 0.3.2

You may also add line numbers to the source code with : linenos::

jupyter-execute::
:linenos:

print ('A
print ('B'")
print ('C

produces:

print ('A
print ('B")
print ('C

A
B
C

To add line numbers from a specific line to the source code, use the 1ineno-start directive:

Jjupyter—execute::
:lineno-start: 7

print ('A
print ('B")
print ('C

produces:

print ('A
print ('B")
print ('C

A
B
C

You may also emphasize particular lines in the source code with : emphasize-lines::

jupyter-execute::

:emphasize-lines: 2,5-6
d = {
'a' 1,
'b': 2,
'c! 3,
'd': 4,
'e': 5,
}
produces:
d = {
'a': 1,
'b': 2,
'c': 3,

(continues on next page)

12

Chapter 5. Directive options

Jupyter Sphinx, Release 0.3.2

(continued from previous page)

13

Jupyter Sphinx, Release 0.3.2

14 Chapter 5. Directive options

CHAPTER
SIX

CONTROLLING EXCEPTIONS

The default behaviour when jupyter-sphinx encounters an error in the embedded code is just to stop execution of
the document and display a stack trace. However, there are many cases where it may be illustrative for execution to
continue and for a stack trace to be shown as output of the cell. This behaviour can be enabled by using the raises
option:

Jjupyter—execute::
:raises:

1/0

produces:

1/0

ZeroDivisionError Traceback (most recent call last)
Cell In[13], line 1
-———>11/0

ZeroDivisionError: division by zero

Note that when given no arguments, raises will catch all errors. It is also possible to give raises a list of error
types; if an error is raised that is not in the list then execution stops as usual:

jupyter-execute::
:raises: KeyError, ValueError

a = {'hello': 'world!'}

al'jello']
produces:
a = {'"hello': 'world!'"'}
al['jello"]
KeyError Traceback (most recent call last)
Cell In[14], line 2

1 a = {"hello': 'world!'}

———=> 2 a['jello']

KeyError: 'Jjello'

15

Jupyter Sphinx, Release 0.3.2

Additionally, any output sent to the stderr stream of a cell will result in jupyter-sphinx raising an exception. This
behaviour can be suppressed (and the st derr stream printed as regular output) by providing the stderr option:

jupyter—execute::
:stderr:

import sys

print ("hello, world!", file=sys.stderr)

produces:

import sys

print ("hello, world!", file=sys.stderr)

hello, world!

16 Chapter 6. Controlling exceptions

CHAPTER
SEVEN

CONTROLLING THE EXECUTION ENVIRONMENT

The execution environment can be controlled by using the jupyter—kernel directive. This directive takes the
name of the Jupyter kernel in which all future cells (until the next jupyter—-kernel directive) should be run:

jupyter-kernel:: python3
:id: a_unique_name

jupyter—kernel can also take a directive option : id: that names the Jupyter session; it is used in conjunction
with the jupyter-download roles described in the next section.

Note that putting a jupyter-kernel directive starts a new kernel, so any variables and functions declared in cells
before a jupyter—kernel directive will not be available in future cells.

Note that we are also not limited to working with Python: Jupyter Sphinx supports kernels for any programming
language, and we even get proper syntax highlighting thanks to the power of Pygments.

17

Jupyter Sphinx, Release 0.3.2

18 Chapter 7. Controlling the execution environment

CHAPTER
EIGHT

DOWNLOADING THE CODE AS A SCRIPT

Jupyter Sphinx includes 2 roles that can be used to download the code embedded in a document:
:jupyter—-download:script: (for a raw script file) and :jupyter—-download:notebook: or
: jupyter—-download:nb: (for a Jupyter notebook).

These roles are equivalent to the standard sphinx download role, except the extension of the file should not be given.
For example, to download all the code from this document as a script we would use:

:jupyter-download:script: click to download <index>"

Which produces a link like this: click to download. The target that the role is applied to (index in this case)
is the name of the document for which you wish to download the code. If a document contains jupyter—kernel
directives with : 1d: specified, then the name provided to : id: can be used to get the code for the cells belonging
to the that Jupyter session.

19

https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#role-download

Jupyter Sphinx, Release 0.3.2

20 Chapter 8. Downloading the code as a script

CHAPTER
NINE

STYLING OPTIONS

The CSS (Cascading Style Sheet) class structure of jupyter-sphinx is the following:

- Jjupyter_container, jupyter_cell
- cell_input
- cell_output
- stderr
— output

If a code cell is not displayed, the output is provided without the jupyter_container. If you want to adjust the
styles, add a new stylesheet, e.g. custom. css, and adjust your conf . py to load it. How you do so depends on the
theme you are using.

Here is a sample custom. css file overriding the st derr background color:

.jupyter_container .stderr ({
background-color: #7FFF00;
}

21

Jupyter Sphinx, Release 0.3.2

22 Chapter 9. Styling options

CHAPTER
TEN

CONFIGURATION OPTIONS

Typically you will be using Sphinx to build documentation for a software package.

If you are building documentation for a Python package you should add the following lines to your sphinx conf . py:

import os

package_path = os.path.abspath('../..")
os.environ['PYTHONPATH'] = ':'.join((package_path, os.environ.get ('PYTHONPATH', ''")))

This will ensure that your package is importable by any IPython kernels, as they will inherit the environment variables
from the main Sphinx process.

Here is a list of all the configuration options available to the Jupyter Sphinx extension:
jupyter_execute_default_kernel

The default kernel to launch when executing code in jupyter—execute directives. The default is
python3.

jupyter_execute_data_priority

The display priority of different output mimetypes. Mimetypes earlier in the data prior-
ity list are preferred over later ones. This is relevant if a code cell produces an out-
put that has several possible representations (e.g. description text or an image). The de-
faultis ['application/vnd. jupyter.widget-view+json', 'text/html', 'image/
svg+xml', 'image/png', 'image/jpeg', 'text/latex', 'text/plain'].

jupyter_execute_kwargs

Keyword arguments to pass to nbconvert .preprocessors.execute.executenb, which con-
trols how code cells are executed. The defaultis dict (timeout=-1, allow_errors=True).

jupyter_sphinx_linenos
Whether to show line numbering in all jupyter-execute sources.
jupyter_sphinx_continue_linenos

Whether to continue line numbering from previous cell in all jupyter—-execute sources.

23

Jupyter Sphinx, Release 0.3.2

24 Chapter 10. Configuration options

CHAPTER
ELEVEN

CHANGELOG

11.1 Release 0.3.0

» Switch the extension name to jupyter-sphinx, deprecate jupyter-sphinx.execute.

* Miscellaneous bugfixes following the restructuring of the codebase.

25

	Installation
	Enabling the extension
	Basic Usage
	Thebelab support
	Directive options
	Controlling exceptions
	Controlling the execution environment
	Downloading the code as a script
	Styling options
	Configuration options
	Changelog
	Release 0.3.0

